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Abstract: State Estimation techniques are widely used to estimate the operating state of power systems in the 

most reliable manner so that the estimated state variables reflect the current system state faithfully and these 

studies enable the energy management centre to operate the system in secure manner under normal as well as 

contingent conditions. Those algorithms which generate a fairly good estimate in spite of the presence of bad 

measurements are considered to be comparatively superior and WLAV based SE has been widely accepted as 

one such technique whose outcome is almost immune to the existence of bad measurements. In this paper, a 

new, line flow based WLAV state estimation (WLAV-LFBSE) technique for power systems using line flow 

measurements, bus power injections and bus voltage magnitudes as measurement vectors has been suggested 

and it has been solved through PSO  technique. The proposed method has been tested on standard test systems 

taking into account various percentages of bad measurements and the results are analyzed. 
Keywords - State Estimation, Weighted Least Absolute value method, Line flow based WLAV, LFWLAV-PSO 

and Power System. 
 

I. Introduction 
 State estimation techniques were developed for the purpose of generating a data base for power system 

studies from the available redundant set of erroneous measurements.  In the present day circumstances where the 

power systems are operated under constantly growing stress, system security is under great threat and to ensure 

that the system operates in a secured manner even under contingent conditions, the system is to be monitored 

continuously and corrective actions are to be implemented to limit the out of bound voltages and to relieve the 

lines off their overloads. This makes it inevitable to use real time monitoring and estimating techniques that are 

fast and reliable. WLS technique has been widely used for solving the problem of state estimation. (1). Many 

variants of this WLS technique are available, each one thriving in its own way to generate a convincing estimate 

within a reasonable time. Though computationally simple, WLS based techniques are prone to the ill effects 

caused by the presence of bad measurements in the measurement vector and the focus has shifted towards 

obtaining a good estimate even in the presence of such bad measurements. 

A SE algorithm, based on weighted least absolute value (WLAV) minimization technique, has been 

alternatively used to handle power system problems [2-3]. Unlike WLS method, there is no explicit formula for 

the solution of WLAV algorithm but it can be reformulated as a linear programming (LP) problem. The estimate 

is then obtained by solving a sequence of LP problems. It is well known that this estimator is capable of 

automatically rejecting bad data, as long as the bad measurements are not leverage points, and hence found to be 

more robust than a WLS estimator [4].The need for an efficient algorithm that occupies minimum memory and 

requires lower computation time has led to the development of fast decoupled state estimation (FDSE) [5-10] 

based on P  and VQ   natural decoupling. The rate of convergence is strongly influenced by the initial 

voltages, which sometimes have a large   and a poor V and the coupling between P  and VQ   

mathematical models.  

The line flow and bus voltage magnitude load flow model presented in (11) has been used in this paper 

to develop a similar SE model which has been solved using WLS technique by applying PSO  algorithm. This 

approach tends to avoid most of the factorization related matrix manipulation problems mentioned so far. 

Presence of bad data has a substantial impact over the quality of the estimate generated by the least 

squares based estimator and hence special techniques were needed to identify them and quantify their effects. A 

linear recursive bad data identification technique based on power system decomposition has been presented in 

(12). Neural network based filter has been applied for bad data detection and identification in(13) in which once 

trained , the filter quickly identifies most measurement errors simultaneously by comparing the square 

difference of raw measurements and their corresponding estimated values with some given thresholds. Bad data 

prefiltering using wavelet transform has been presented in (14) and this approach identifies and filters out the 

bad data even before the state estimation algorithm estimates the system state. An identification algorithm based 

on the largest normalized residual considering statistical correlation among the measurements is presented in 

(15). As the proposed method here uses a constant Jacobian, unlike the conventional WLS estimator, the impact 
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of bad measurements over the estimate has been considerably reduced and hence it doesn‟t require a separate 

algorithm to filter out the bad measurements. Over the past few decades soft computing algorithms have been 

playing a major role in solving optimization problems. Evolutionary programming algorithms are promising 

from the point of view of their capability to evade local maxima and minima. Out of the many evolutionary 

algorithms PSO has been widely used from the point of view of assured convergence and programming 

flexibility. PSO algorithm has been successfully implemented for solving the problem of SE inspite of the 

apprehensions such as larger computational time etc (16). In this work a line flow based WLAV state estimation 

problem has been formulated and it has been solved through PSO technique in the absence as well as the 

presence of bad measurements for various standard IEEE test systems. 

 

II. Problem formulation 
 2.1 Conventional WLAV State Estimation 

The WLS estimator is not a robust one because of its quadratic objective function. Therefore, an 

estimator involving non-quadratic objective function is used. This estimator offers a more robust estimation, 

which is obtained by minimising 
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Since the above objective minimises the absolute value of the error weighted by the measurement accuracy
2

j , it is commonly called as the WLAV estimator.  

The objective of Eq. (1) is reformulated using LP in order to solve the WLAV problem: 
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A SE solution is obtained by solving the LP problem given by Eq. (3) iteratively for x  until x  is 

sufficiently small. This method is highly inefficient, as it requires large computer memory and involves the time 

consuming LP technique, which itself is an iterative process and hence not suitable for real time applications. 

However this algorithm is robust and stable in the sense that it has the inherent feature of rejecting bad 

measurements by interpolating only ns  among the nz  measurements and free from ill-conditioning due to the 

effect of wide assignment of weighting factors and avoidance of factorisation and multiplication of several 

matrices. In this paper an attempt has been made to increase the computational efficiency of the robust WLAV 

technique through linearization. 

 

2.2. Proposed Method 

The real and reactive bus powers as a function of real line flows, reactive line flows and Vm
2
 can be 

written as 
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Treating P,Q and Vm
2
 as state variable[x], the measurement set [Z] can be represented as 

 𝑍 =  𝑓 𝑥                                                                                                                                                                                 6  
Where  

 𝑍 = [𝑃, 𝑄, 𝑝, 𝑞, 𝑉2 ]𝑇    

The WLAV objective function can be written as  

𝑀𝑖𝑛 𝜑 =  𝑤𝑖  𝑍𝑖 − 𝑓𝑖 𝑥                                                                                                                                                   7 

𝑛𝑚

𝑖=1

 

The above equation does not include line capacitances and shunt susceptances and hence it is inadequate to 

estimate the system state. However the problem can be made solvable if constraint equations including branch 

voltage drop and phase angle drop are considered. These constraints can be represented as 

𝑕 𝑥 =  2𝑅𝑝 + 2𝑋𝑞 −  Λ𝐴1+
𝑇 +  𝐴1−

𝑇  𝑉2 = 0                                                                                                                   8  
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𝑔 𝑥 = 𝐶𝑋𝑝 − 𝐶𝑅𝑞 − 𝐶𝛼 = 0                                                                                                                                               9  

The constrained optimization problem of equations 7, 8 and 9 can be formulated as a linear programming 

problem as 

𝑀𝑖𝑛 𝜑 =  𝑤𝑖  𝑆𝑖′ − 𝑆𝑖′′                                                                                                                                                 𝑛𝑚
𝑖=1 (10) 

Subject to 

𝐴.𝑥 + 𝑆 ′ − 𝑆 ′′ = 𝑍 − 𝑓 𝑥0  

𝐻.𝑥 = −𝑕 𝑥0    
𝐺.𝑥 =   −g(x0)                                 
 

Where  

A, H and G are the jacobian matrices formed by partially differenting f(x), h(x) and g(x) with respect to x. 

x is the state correction vector  

 S‟ and S‟‟ are the slack variable vectors. 

The above LP problem can be solved iteratively for x till the algorithm converges. It is to be noted that the 

jacobian matrices A, H and G are constant matrices that require to be computed only at the beginning of the 

iterative process. However RHS vectors f(x), g(x) h(x) must be recomputed during iterative process. 

 

2.2.1 Introduction of PSO 

PSO was first introduced by Kennedy and Eberhart in 1995 and it is a heuristic optimization technique 

induced by the swarm intelligences of animals such as bird flocking, fish schooling. A swarm of particles 

represent a solution to the optimization problem. Each particle adjusts its position according to its own 

experience and the experience of its neighboring particles. The position and velocity of 𝑖𝑡𝑕particle in an N – 

dimensional search space is represented as 

𝑋𝑖  = ( 𝑥𝑖1 ,𝑥𝑖2 , .  .  .  .  .  𝑥𝑖𝑛   ) 

𝑣𝑖  = ( 𝑣𝑖1 , 𝑣𝑖2 , .  .  .  .  .  𝑣𝑖𝑛   ) 

 The best position achieved by a particle is recorded and is denoted by  

𝑃𝑏𝑒𝑠𝑡  𝑖  = ( 𝑥𝑖1
𝑃𝑏𝑒𝑠𝑡  ,  .  .  .  .  .  𝑥𝑖𝑛

𝑃𝑏𝑒𝑠𝑡  ) 

The best particle among all the particles in the population is represented by  

𝐺𝑏𝑒𝑠𝑡  𝑖  = ( 𝑥𝑖1
𝐺𝑏𝑒𝑠𝑡  ,  .  .  .  .  .  𝑥𝑖𝑛

𝐺𝑏𝑒𝑠𝑡  ) 

The updated velocity and position of each particle in ( 𝑘 + 1 )𝑡𝑕  step are calculated as follows 

𝑋𝑖
  𝑘+1 = 𝑋𝑖

 𝑘  + 𝑉𝑖
  𝑘+1                                                                                                                                 (11) 

Where,                        
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In this velocity updating process, the acceleration coefficients 𝐶1,𝐶2and weight parameter „w‟ are 

predefined and 𝑟𝑎𝑛𝑑1and𝑟𝑎𝑛𝑑2are uniformly generated random numbers in the range of [ 0, 1 ] and this 

velocity updation is carried out until stopping criterion is reached/met. 

 

2.2.2 PSO Algorithm 

1. Choose the population size, the number of generations, Wmin, Wmax, C1min, C1max, C2min,  C2max, pbest, 

gbest. 

2. Initialize the velocity and position of all particles randomly, ensuring that they are within  limits. Here  the 

individuals represent the real and reactive power flows and bus voltage  magnitudes. 

3. Set the generation counter t=1. 

4. Evaluate the fitness for each particle using equation (10) according to the objective  function. 

5. Compare the particle‟s fitness function with its 𝑃𝑏𝑒𝑠𝑡  𝑖 . If the current value is better than  

𝑃𝑏𝑒𝑠𝑡  𝑖  , then set 𝑃𝑏𝑒𝑠𝑡  𝑖  is equal to the current value. Identify the particle in the neighborhood with the 

best success so far and assign it to Gbest. 
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6. Update velocity by using the global best and individual best of the particle. 

7. Update position by using the updated velocities. Each particle will change its position. 

8. If the stopping criteria is not satisfied set t=t+1 and go to step 4.Otherwise stop. 

 

III. simulation and results 
The proposed LFBSE problem has been solved using PSO technique by selecting a population size of 

20 and generation size of 50 and it has been tested on standard IEEE 14, 30 and 57 bus test systems. The 

measurement vector has been generated by adding a small percentage of noise to the values obtained from the 

Newton Raphson load flow. Bus voltage magnitudes at the load buses and real and reactive power flows through 

the lines were taken as state variables. All the line flows, bus power injections and bus voltage magnitudes at the 

even numbered buses were considered in the measurement set to achieve necessary redundancy. To study the 

performance of the algorithm in the presence as well as absence bad measurements, in each of the measurement 

set, 5, 10 and 15 number of bad measurements were introduced randomly. The performance of the algorithm has 

been validated by comparing the results of the proposed method against the results obtained using standard 

WLAV state estimation and LFWLAV State Estimation The algorithms were tested with a flat start and a 

convergence tolerance of 0.0001. Three performance indices are defined to validate the performance of the 

proposed technique. They are  ∆Vrms ,   ∆prms ,   ∆qrms . 

∆Vrms =   
1
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2
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                                                                                                                                              18  

∆prms    =   
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2
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1
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2
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                                                                                                                                              (20) 

Tables 1, 2 and 3 compare the performance of the proposed method with WLAV and LFWLAV estimation 

algorithm in terms of the performance indices defined in 1, 2 and 3 and NET. The performance of the algorithm 

is also illustrated through bar charts in Fig 1 to 12. 

 

Table 1: Results for IEEE 14 Bus Systems 

 

 
 

 

 

Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 

 

WLAV 0.1406 0.1351 0.1643 211 

LFWLAV 0.0883 0.1103 0.111 136 

LFWLAV-PSO 0.0872 0.1097 0.1097 143 

5 WLAV 0.1405 0.1286 0.1631 210 

LFWLAV 0.0882 0.1074 0.1094 136 

LFWLAV-PSO 0.0867 0.1045 0.1085 145 

10 WLAV 0.1363 0.1277 0.1573 212 

LFWLAV 0.0635 0.1034 0.1083 137 

LFWLAV-PSO 0.0585 0.1033 0.1079 146 

15 WLAV 0.1349 0.1215 0.138 212 

LFWLAV 0.0246 0.1027 0.1078 137 

LFWLAV-PSO 0.0233 0.1026 0.107 146 
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Table 2: Results for IEEE 30 Bus Systems 

 

 
 

 

 

Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 

 

WLAV 0.1742 0.3824 0.2117 468 

LFWLAV 0.0755 0.2173 0.1325 189 

LFWLAV-PSO 0.0659 0.2165 0.1318 197 

5 WLAV 0.0833 0.3794 0.2109 469 

LFWLAV 0.0397 0.2159 0.1319 188 

LFWLAV-PSO 0.0314 0.2157 0.1314 197 

10 WLAV 0.0609 0.3756 0.2099 469 

LFWLAV 0.0328 0.2138 0.1311 189 

LFWLAV-PSO 0.0312 0.213 0.1307 199 

15 WLAV 0.0454 0.3743 0.2081 469 

LFWLAV 0.0283 0.213 0.1305 189 

LFWLAV-PSO 0.0244 0.2024 0.1299 200 
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Table 3: Results for IEEE 57 Bus Systems 
Measurements Method ΔVrms ΔPrms ΔQrms NET in ms 

0 

 

WLAV 0.0791 0.2579 0.1346 711 

LFWLAV 0.0288 0.1173 0.1091 233 

LFWLAV-PSO 0.0287 0.1161 0.1083 249 

5 WLAV 0.0788 0.2553 0.1332 709 

LFWLAV 0.0283 0.1164 0.1083 234 

LFWLAV-PSO 0.0269 0.1152 0.1075 249 

10 WLAV 0.0782 0.2527 0.132 709 

LFWLAV 0.0272 0.1158 0.1071 232 

LFWLAV-PSO 0.0251 0.114 0.1052 250 

15 WLAV 0.0774 0.2502 0.1313 710 

LFWLAV 0.0258 0.115 0.106 232 

LFWLAV-PSO 0.0252 0.1138 0.1048 254 

 

 
 

IV. Conclusion 
 A novel line flow based state estimation technique which results in the formation of constant jacobian 

matrix has been presented in this paper and it has been solved through WLAV method. PSO technique has been 

implemented for solving the LFBWLAV problem in the presence as well as absence of bad measurements. The 

results indicate that the normalized value of the error between the actual values and estimated values of the state 

variables is considerably lesser in the case of proposed method when solved using PSO than that of the 

conventional WLAV and LFBWLAV techniques.  There is a marginal increase in computation time due to the 

heuristic search nature of PSO algorithms still as the estimated system state is more closer to the actual system 

state in the proposed method, this method is highly suitable for security studies of power systems. 
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